Impossibility of almost extension

نویسندگان

چکیده

Let (X,???X),(Y,???Y) be normed spaces with dim?(X)=n. Bourgain's almost extension theorem asserts that for any ?>0, if N is an ?-net of the unit sphere X and f:N?Y 1-Lipschitz, then there exists O(1)-Lipschitz F:X?Y such ?F(a)?f(a)?Y?n? all a?N. We prove this optimal up to lower order factors, i.e., sometimes maxa?N??F(a)?f(a)?Y?n1?o(1)? every F:X?Y. This improves bound maxa?N??F(a)?f(a)?Y?nc? some 0<c<12. If X=?2n, approximation in can improved maxa?N??F(a)?f(a)?Y?n?. sharp, maxa?N??F(a)?f(a)?Y?n? F:?2n?Y.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note for Extension of Almost Sure Central Limit Theory

for any continuity point x of H . Several papers have dealt with logarithmic limit theorems of this kind and the above relation has been extended in various directions. Fahrner and Stadtmüller [5] gave an almost sure version of a maximum limit theorem. Berkes and Horváth [2] obtained a strong approximation for the logarithmic average of sample extremes. Berkes and Csáki [1] showed that not only...

متن کامل

Sampling and Generalized Almost Periodic Extension of Functions

This brief explores the connections between nonuniform sampling of a certain function and the almost periodic extension of its Fourier transform. It is shown that the Fourier transform of a band-limited function can be extended (as a weighted sum of translates) as a Stepanoff almost periodic function to the whole frequency axis. This result leads to a generalized nonuniform sampling theorem whi...

متن کامل

THE ROPER-SUFFRIDGE EXTENSION OPERATORS ON THE CLASS OF STRONG AND ALMOST SPIRALLIKE MAPPINGS OF TYPE $beta$ AND ORDER $alpha$

Let$mathbb{C}^n$ be the space of $n$ complex variables. Let$Omega_{n,p_2,ldots,p_n}$ be a complete Reinhardt on$mathbb{C}^n$. The Minkowski functional on complete Reinhardt$Omega_{n,p_2,ldots,p_n}$ is denoted by $rho(z)$. The concept ofspirallike mapping of type $beta$ and order $alpha$ is defined.So, the concept of the strong and almost spirallike mappings o...

متن کامل

Impossibility of SNARGs∗

In the last few years, applications such practical verifiable computation, anonymous cryptocurrencies (e.g. Zcash), signature of knowledge and etc have made succinct non-interactive arguments (SNARGs) as an active research area for ground-breaking researchers. A non-interactive computationally sound argument (proof system) for NP is succinct if the its proof size is polylogarithmic the instance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107761